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1. Phys.: Condens. Matter 7 (1995) 7213-7281. Printed in the UK 

Electron Raman scattering in cylindrical quantum wires 

J M Berguest, R Rierat, F Comast and C Trallero-Ginerf 
t Depamnent of Physics, University of Orknte, Santiago de Cuba, Cuba 
t D e m e n t  of Theoretical Physics, Havaoa University, Vedado 10400, Havana Cuba 

h i v e d  29 December 1994, in final form 22 May 1995 

Abstract The differential cross-section (DCS) for an electron Raman scattering (ERS) process 
in a semiconductor quantum wire (QW) of cylindrical geometry is calculated for T = 0 K 
and neglecting phonon-assisted transitions. Electron states are considered assuming complete 
confinement within the QW. We also assume single parabolic conduction and valence bands. 
Two kinds of specwm are discussed emission spenra (DCS as a function of emitted photon 
energy) and excidon spectra (DCS as a function of incident photon energy). In both cases 
we analyse the DCS for different scattering configurations. We study selection d e s  for the 
processes. Singularities in the spectra are found and interpreted. The ERRS studied here can be 
used to provide direct information about the electmn band srmctn~ of the system. 

1. Introduction 

Raman scattering experiments are well known to provide a powerful tool for the investigation 
of different physical propeaies of semiconductor nanostructures (superlattices, quantum 
wells, etc) (Cardona and Giintherodt 1989, Klein 1986, Cardona 1990). In particular 
the electronic structure of semiconductor materials and nanostructures can be thoroughly 
investigated considering different polarizations for the incident and emitted radiation 
(Pinczuk and Burstein 1983, Cardona and Giintherodt 1989). In connection with this kind 
of experiment the calculation of the differential cross-section (DCS) for Raman scattering 
remains a rather interesting and fundamental issue to achieve a better understanding of the 
manufactured semiconductor nanostructures characterized by their mesoscopic dimensions 
(Colvard e l  al 1985, Sood el  al 1985, Cros et al 1992, Shields et a1 1992). Among 
the various Raman scattering processes involved in this kind of research electron Raman 
scattering (ERS) seems to be a useful technique providing direct information on the 
energy band structure and the optical properties of the investigated systems. ERS is 
qualitatively explained as a two-step process: in the first-step the system absorbs a photon 
from the incident radiation and an electron-hole pair (EHF') is created in a virtual state 
(after an interband electron transition); in the second step the electron and the hole move 
independently of each other and emit photons of secondary radiation performing intraband 
transitions (Riera et nl 1988). In the final state an EHF' appears in a real state of the system, 
which is thus left in an excited state. The DCS for ERS, in the general case, usually 
shows singulaxities related to interband and intraband transitions. This latter result strongly 
depends on the scattering configurations: the structure of the singularities is varied when 
the photon polarizations change (Cardona and Giintherodt 1982). This peculiar feature of 
ERS allows us to determine the snbband structure of the system by direct inspection of the 
singularity positions in the spectra. 
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For bulk semiconductors ERS has been studied in the presence of external applied 
magnetic and electric fields (Wallis and Mills 1970, Comas et 01 1985, Goltzev et a1 1979, 
Bechstedt el al 1975). In the case of a quantum well preliminary results were reported by 
Riera eta1 (1988). In the present d c l e  our aim is to study ERS in a quantum wire (QW) of 
cylindrical shape. In these novel systems the emission and excitation spectra are significantly 
modified due to the quasi-one-dimensional character of the electronic states. The ERS 
processes are determined by electronic transitions between one-dimensional electron or 
hole subbands. For the sake of simplicity we assume complete electron confinement within 
the QW. We also consider parabolic bands in the zero-temperature case and neglect all the 
transitions assisted by phonons. Such simplifying assumptions facilitate the calculations but 
still provide a clear picture of the physical situation. 

2. Model and applied theory 

Let us briefly describe the model and fundamental theory applied in our calculations. The 
QW geomew is cylindrical with circular cross-section of radius,ro. As explained above, 
we consider a single conduction (valence) band, which is split into a subband system due 
to complete electron confinement within the structure. The solution of the Schrodinger 
equation in the envelope function approximation leads to 

for conduction electrons. In equation (1) J n ( x )  is the Bessel function of order n. x., 
denotes the zeros of the Bessel function: J,(x,,) = 0. U, is the Bloch function taken at 
ko = 0 in the Brillouin zone, where (by assumption) the band extrema are located. We 
use cylindrical coordinates r ,  8, z .  The complete electron confinement in the QW implies 

The suffix e is used to denote electronic quantities. The electronic states are described 
xslr ,  = 0. 

by the quantum numbers: ne, me, k,. The eigenenergies are 

pe being the electron effective mass and E = 0 at the bottom of the bulk conduction band. 
For the holes the analogous quantities are obtained essentially by replacing suffix e by h 
(labelling hole quantities). 

The DCS for ERS is given by (Riera et nl 1988) 

where V = nr;L is the normalization volume, n(w) is the refraction index as a function 
of the radiation frequency, w, and e, are the frequency and unit polarization vector for the 
emitted secondary radiation. c is the light velocity and wi is the frequency of the incident 
radiation. W(o,, e,) is the transition rate calculated according to 

where 
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In (5) j = e,  h for the cases of electrons or holes, respectively, li) and I f )  denote initial 
and final states of the system with their corresponding energies Ei and E j .  la) and Ib) are 
intermediate states with energies E, and E* while Fa and rb are the corresponding lifetime 
broadenings. 

The operator HI is of the form 

where PO is the free electron mass. This operator describes the interaction with the incident 
radiation field in the dipole approximation. The interaction with the secondary radiation 
field is described by the operator 

The latter operator describes the photon emission by the electron (hole) after transitions 
between conduction (valence) subbands of the system. In (5) the intermediate states la) 
represent an EHP in a virtual state (after absorption of the incident photon), while the states 
Ib) are related to the ‘interference diagrams’ (Riera et a1 1988, Comas et a1 1986). This 
latter term involves a negligible contribution whenever the energy gap E ,  is large enough 
(for instance, this is the case for GaAs, CdTe, etc) and will not be considered in the present 
work. 

In the initial state li) we have a completely occupied valence band, unoccupied 
conduction band and an incident photon of energy hof. Hence 

Et =Ref. (8) 

The final state I f )  involves an EHP in a real state and a secondary-radiation emitted photon 
of energy ho,. Hence 

For the intermediate states la) the energies E, are easily obtained from the above discussion. 

3. Differential cross-section 

Using the theory depicted in section 2 we can obtain, after tedious calculations, explicit 
expressions for the DCS of the ERS process. In all our calculations we neglect the photon 
wavevector in comparison with the electron wavevector. Hence, in the final state we have 
ke + hh = 0. We just write the final results: 

where 
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We are applying the following notation for the Kronecker delta: 

x = o  A(x) = 

We also have 

assuming a finite lifetime for the EHP in the final state, while 

The vectors 2, and Z are unit vectors along the corresponding Cartesian axes. 
For the interband matrix element of operator P we use the notation 

1 P,, = - J u:Pu, d3r. 
vo q 

The above matrix element is evaluated at 
cell volume. 

= 0 of the Brillouin zone while VO is the unit 
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Let us make some remarks concerning the above equations. For a general scattering 
configuration we should have three terms in the DCS, as explicitly seen in (10). How- 
ever, for particular choices of the scattering configuration some of these terms could be 
absent. For instance, if we have backscattering configuration with Z parallel to the radia- 
tion wavevector k, then (1 l) will not contribute to the DCS. In particular for the scattering 
configuration 2(ef, u+)Z the contribution to the DCS is given by (12). In the configuration 
where scattered radiation wavevector is parallel to the x-axis with polarization e, 11 2, i.e., 
Z(el, esz)X, only the first term on the right-hand side of equation (10) will be present in 
the DCS. In the z(el, u*)Z configuration the emission spectrum of ERS in a QW shows 
maxima at the following values of os: 

As can be seen from (23) or (24) these frequencies correspond to electron transitions 
connecting the subband edges for a process involving just the conduction or just the valence 
band (i.e., intraband transitions). The following selection rule is fulfilled n, = nh f 1; the 
minus sign applies to (23) and the plus sign to (24). 

Other singularities of (12) occur whenever g = 0. Such singularities are mainly related 
to certain values of the frequency of of the incident photon. For the excitation spectra the 
positions of these singularities are given as follows: 

Here the ne = nh + 1 selection rule must be fulfilled. The peaks related to the latter 
singularities correspond to interband EHP transitions and their positions depend on the 
incident radiation frequency o1 for both excitation and emission spectra. The singularities 
involved in (23) and (24) are independent of or and correspond to intraband transitions. 
The latter singularities are present just in the emission spectra 

4. Discussion of the results 

As discussed in section 3 we have computed the emission and excitation spectra of the 
ERS process for a given polarization e, of the emitted radiation. The physical parameters 
entering our formulas were taken for the GaAs case: E, = 1.43 eV; fie = 0.0665~0; 
&h = 0.45 PO (the heavy-hole band). 

In  order to construct the curves shown in the figures we used: 

against AwJEo 
~ 

the so-called ’emission spectra’, and ‘also curves of 
1 

Eo 
against -@U! - E g )  

the so-called ‘excitation spectra’. The quantity (1/V) [dzo/dos dQ] is frequently called 
the ‘scattering efficiency’ (SE). In figure l(a) the excita9on spectrum is shown (SE against 
(fiq - E,)/&) for the scattering configuration z(el, Z ) X .  In this case just the first term 
on the right-hand side of (10) contributes. Hence we do not have singularities. For certain 
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Figure 1. ERS cros:-sgtion (in arbimy units) for a GaAs quantum wire in the scattering 
configuration ?(e[, Z ) X .  The solid curve corresponds to TO = 4 nm. the dashed c w e  to 
ro = 3 nm. We have set r, = 1 meV and i" = 3 meV. (a) scattering efficiency as a function 
of (l/Eo)(Aoi - E,) (excitation specmm). The value lo, = 2.3 eV i s  fixed. (b) scattering 
efficiency as a function of hw,JEo (emission spectrum). The value of hui = 2.8 eV is fixed. 
The thresholds indicating different transitions btween h e  valence and conduction subbands are 
labelled by (n, m) (see equation (11)). 

values of UI we can find abrupt changes in the curve slope which correspond to different 
thresholds related to the points where a given subband starts to contribute. to the DCS. 
This provides the steplike character of the curve. The lower admissible value of hol - .Es 
is defined by the minimum value of x,, (i.e., xoI). For higher values of hol - E, new 
subbands start to contribute, thus defining the other thresholds seen in the figure. We give 
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explicit indication of the points where the thresholds are present, specifying the involved 
subbands. In figure l(b) the emission spectrum (SE against Ao,/Eo) is shown for the same 
scattering configuration. The incident radiation frequency was fixed as A q  = 2.8 eV. The 
rest of the parameters are chosen as in figure l(a). We again observe in the figure abrupt 
changes in the slope, thus providing a certain steplike dependence of the SE. The points 
where the curve slope presents abrupt changes are related to threshold values of ?io, again 
representing the incorporation of new subbands to the process. It should be realized that, for 
lower values of Am,, more subbands can participate in the emission process. The condition 
AmI -Am, - Eg > &xim must be fulfilled in order to have emission of secondary-radiation 
photons. For fixed values of Ami, E$ and EO, the threshold positions are defined by xnm. 
This is explicitly indicated in figure l(a). 

-- - m a  

hw s _ -  
EO 

Figure 2 Scarrering efficiency as a function ofhw, f Eo (emission s p e c ” )  for a GaAs quantum 
wire for the Z(er. u-)Z scattering configuration. The calculation was performed applying Ihe 
same parameters as in figwe 1. Resonant hamitions are indicated by m,(n.;m,,mh) and 
wh(nc: m,. mb) corresponding to electron or hole intersubband transitions, respectively (see 
(23) and (2‘0). 

In figure 2 we show the emission spectra for the 2(el, U-)Z configuration. Hence, just 
the term with the ‘-’ sign in (12) contributes. In this case we are faced with a singular 
behaviour of the S E  the positions of the singularities are defined by (23) and (24). We 
have indicated the positions of the singular points according to the notation’of (23) and (24). 
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Figure 3. Scattering efficiency as a function of (l/&)(fioi - E*) (excimtion spectrum) far 
a GaAs quantum wire in the p(ei,u-)Z scattering configuratjon. We used the same set of 
parameters as in figure 1. Resonant electron-hole interband transitions, following equation (ZS), 
are indicated by o(n.: m..mh). 

In figure 3 we show the excitation spectra for the same scattering configuration as in 
figure 2. Now hw, = 2.3 eV and A q  is a variable quantity. The other parameters coincide 
with those of figure 2. We observe the singular behaviour with direct indication of the 
positions of the singularities. They are given by expression (25). Again we see a threshold 
for the lower values of go[ - E,)E;' when xn,,,,, and xnrmr take their minimum values. 

The singular structure of the DCS, as given in the figures, provides a transparent 
understanding of the energy subband shucture of the QW. 

In the present work we have applied a simplified model for the electronic smcture of 
the system. In a more realistic case we should consider coupled band structure using a 
calculation model like that of Luttinger-Kohn or the Kane model. We also assumed an 
infinite potential barrier for the electrons at the QW interface. A calculation assuming a 
finite barrier is better, but it is also possible to introduce a certain redefined effective mass 
for the infinite-barrier case leading to the correct energy levels for electrons and holes (see 
for instance Trallero-Giner and L6pez-Gondar 1986). The mentioned assumptions would 
lead to better results but entail more complicated calculations. However, within the limits 
of our simple model we are able to account for the essential physical properties of the 
discussed problem. The fundamental features of the DCS, as described in our paper, should 
not change very much in the real QW case. It can be easily proved that the singular 
peaks in the DCS will be present irrespective of the model used for the subband structure 
and may be determined for the values of hw, equal to the energy difference between two 
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subbands: are the respective elecaon (hole) 
energies in the subbands. Similarly, we will have a steplike dependence in the DCS for 
h q  =Am, + Eg + E ,  + E#. Up to the present there is a lack of experimental work for this 
type of ERS. The major interest of our calculations is to stimulate experimental research in 
this direction. 

= E:(h) - E;"), where E:@) > 
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